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Renewable Evolution
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- Solar energy - Marine energy

Hydropower also includes pumped storage and mixed plants;

Marine energy covers tide, wave, and ocean energy
Solar includes photovoltaics and solar thermal
Wind includes both onshore and offshore wind energy
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Global Renewable
Energy Annual
Changes in Gigawatt
(2000-2020)

~3000 GW in total



http://www.irena.org/publications

Net Total Annual Additions
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Photovoltaic Capacity

(Data source: IRENA)

Annual increase (GW)

Previous year's capacity (GW)

2010
\(=-18

Global installed solar PV capacity (until 2020): 7 14 GW, 2020: 127 GW

= More significant total capacity (45% non-hydro renewables; ~1/4 total incl. hydro).
= Fastest growth rate (22% between 2018-2020, 33% in 2018).
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Photovoltaic Development

Annual growth for renewable electricity generation
(Data source: IEA, 2018-2020)

Solar PV Wind Bioenergy Hydro Others

Global installed solar PV capacity (until 2020): 7 14 GW, 2020: 127 GW

= More significant total capacity (45% non-hydro renewables; ~1/4 total incl. hydro).
= Fastest growth rate (22% between 2018-2020, 33% in 2018).

ZHEJIANG UNIVERSITY




More Expected

Increasing competitiveness by lowering Cost of Energy

In 2017, DOE’s Solar

Energy Technologies Office

[SETO) announced that the
20208seal industry had achieved the

Achieved
2020 cost goal for utility-

scale solar of

6¢/kWh.

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or
state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010-17.
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How to Integrate?

General Photovoltaic power conversion (grid integration)

Photovoltaic system

Input Output
Tl e e
Temp. Solar Gener Converter Filter Transfo Grid

Electrical power conversion

» Photovoltaic Effect

Power generation is dependent on the ambient conditions

» Power Electronics
Power converters are essential to realize the power transfer

» Power Grid

Synchronous generator governed system with fixed frequency and voltage
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PV Makes Trouble

A Double-Edged sword

PV Panels (" Low Voltage (LV) Grid

Power Converter
(DC voltage up to 1.5 kv) Circuit Level (AC RMS voltage up to 1 kV)
J, HeEmEEEE 8809090909 [ T PCC
_O_ -
- Switching Device
MV or HV
= ~Wh— —— Networks

Resistor ~ Capacitor
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Component Level
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PV Makes Trouble

A Double-Edged sword

PV Panels (
(DC voltage up to 1.5 kv)

Low Voltage (LV) Grid

Power Converter (AC RMS voltage up to 1 kv)
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More Challenges

Challenges with a high penetration of PV systems

= QOverloading at peak power generation (voltage rise, transformer saturation)

* Equipment operation failures/issues (feeder regulation, load tap changes, switched
capacitor banks, etc.]

= Demand and energy management (masking peak demand, unbalancing]

= System protection (relay desensitization, breaker, unidirectional islanding)

= Power quality (harmonics, flickers]
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ts of 1Ireland's grid

id taxwet

of Northern Ireland’s electricity network are becoming overloaded.

Overloading !

ns thatthose wanting to become green power producers are being told they cannot

sent electricity grid was builtin the 19605 and 1970s o transport electricity from three power stations to homes and businesses.

i was not builtto cope with power coming back in the opposite direction.

xactly what is happening as homes emorace the subsidies offer
ledto areas of Northern the grid is at saturation point or itwil be impossile for small-scale projects to getthe go-ahead until substations and lines are upgraded,
s9est prodl inthe clearly on 3 heat map produced by NIE.

¢l Atiinson from Northern Ireland Electrcity (NIE) said the uptake of smal scale generation has been unprecedented

ovemmentincentives introduced back in 2010 were patentially quite lucrative for Some of these developers and they naturally id wish to embrace them” he said.

funatel, the join-up between the government incentives and whatthe network was actualy physically capable of doing wasnt fully taken account of at that e and that has resulted in us geting into Some diffculties now.
Dunlop owns Ballyness Caravan Parkin Bushmills.

antedto install a 50 kilowatt (kw) solar array (group of solar panels), but has been told he can only go ahead with 20 kilowatt because his local substation cannot cope with more power.

oit annoying when the government s really pushing for carbon Youtryto do ityou are held up at every apportunity.” Mr Dunlop saic

i he believed the 50kw installations would have shaved a third off his £30,000 electricity il

Latimer, from Seskinore Farm Meats near Omagh, wants to power his business with solar panels - any excess electricity would be transferred back onto the grid, but he has been told the lines in his area are saturated and he cant go ahead with his small scale renewable pr:
s small scale business... we are [00King to reduce our costs, beefs oing up, thas to go up, S0 we have 1o 100k at how we can be more efficient and this is whatwe are met with,”he said

{awkes, from the Ulster Farmers' Union (UFU), said farmers and small businesses were encouraged to take up small scale generation but their plans are now pointiess.

are being quoted 7km of upgrades plus substation upgrades and thats actually infrastructure upgrades for NIE and so they are getting quotes three or four times their project outiay which makes it unviable. he said

ons about spending on upgrade work are made by the Uity Regulator - last month it approved £2.3m for work on 40 substations.




Reduction of Inertia

Reduction of synchronous inertia in the National Grid (UK)
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Demands on PV Systems

Grid-Connected PV Systems ranging from several kWs to even a
few MWs are being developed very fast and will soon take a major part of
electricity generation in some areas. PV systems must comply with much
tougher requirements than ever before - a combination of standardized PV
features and advanced demands for a grid-friendly integration.

» Flexible power controllability

» Reactive power control

» Frequency regulation through active power
» Harmonic compensation or control

» Dynamic grid support

» Further enhancing reliability and efficiency




More Stringent Requirements

Not just a generator, PV should be More Active in grid regulation

A MPPT \ CPG
@] @]
o o
Time Time
A Delta f RRC
2 M 3 U
o “ 0
o o
Time Time

0 New demands for grid integrations, communications, power flow control, and
protection are needed to accept more renewables.

L Power electronic converters are important in this technology transformation.

Flexible Power (Virtual Energy Storage) Control -
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PV System Configurations
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General Control Structure

The general Control

PV modules DC-AC
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Measurements

+ Basic control (e.g, MPPT)
+ Synchronization
+ Grid support (e.g, FRT)

Monitoring

Flexible Active Power Control

Weather condition

B e »| + Volt./freq. regulation
+ Etc.

Almost all demands - Controlling PV converters
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Active Power Control Solutions

Meet the Demands by integrating storages
» Effective and flexible

» Increased cost and control
» Limited lifetime

PV Arrays

Power flow direction

—> Conventional
------ > With storages




Active Power Control Solutions

Meet the Demands using dummy controllable loads
» Cheap but not very flexible
» Complicated control, relying on communication

» Unidirectional (not possible to inject power)

PV Arrays l

Power flow direction

—> Conventional
------ > With controllable loads




Active Power Control Solutions

Meet the Demands by switching multiple units
» Not very flexible - limited by configuration
» Complicated control, relying on communication - challenging stability

» Unidirectional (not possible to inject power)

PV1 _-l

Power flow direction

—> Conventional

------ [> When disconnecting some units




Active Power Control Solutions

The solution - Flexible Power Point Tracking (FPPT)
» No hardware modification, and easy to implement
» Universal solution to all PV systems

» Not able to provide power (unidirectional)

PV Arrays

Power flow direction

—> Conventional
racking = = aee--- > With FPPT control




Active Power Control Solutions

The solution - Flexible Power Point Tracking (FPPT)

» No hardware modification, and easy to implement

» Universal solution to all PV systems

» Not able to provide power (unidirectional)
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Constant Power Generation

Also referred to as Power Limiting Control (PLC)

» Direct power control
» Current limiting scheme
» Modified MPPT algorithm (FPPT)

_{ ) _— MPPT operation

P.. — PLCoperation

out
Available power

Power limit —_—

Extracted power




Constant Power Generation

Also referred to as Power Limiting Control (PLC)

» Direct power control

MPPT Block

Saturation Block

»




Constant Power Generation

Also referred to as Power Limiting Control (PLC)

» Current limiting scheme

PV current

Isc

Isco

Iscs

Timit

G = 1000 W/m?

MPP

Vtppl Ympp Vipp2 Voo
PV voltage



Constant Power Generation

Also referred to as Power Limiting Control (PLC)

» Current limiting scheme

MPPT Block

Saturation Block

gb



Constant Power Generation

Also referred to as Power Limiting Control (PLC)

» Modified MPPT algorithm (FPPT)
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Constant Power Generation

Also referred to as Power Limiting Control (PLC)

» Modified MPPT algorithm (FPPT)

MPPT/FPPT Block

iy ————
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Results - Power Limiting Control
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P-V Trajectory
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Results - Power Limiting Control

Output Power

Available power

S e=03T% "

fmmt=80%5¥\\\

Plimir = BU%PH ' w‘\_——'—

PV power (kW)

T

Plimit e ZO%PH

0
4 =
Available power
—— 3 B P x ----- A
= S e=122% %,
S e - EO—
E 2t Himit = SO%PH
=
g
= 11 —~ Plimit = 50%Pn
o
JPlimit = 20%1311
0

0 80 160 240
Time (seconds)

i F

ZHEJIANG UNIVERSITY

P-V Trajectory

Ideal MPPT

\

/

[FPPT operation
@ FPP1

\

MPPT operation

Ideal MPPT

N\

\

FPPT operation
@ FPP2

\

MPPT operation

320 100 200 300 _ 400 500

PV voltage (V)



Results - Power Limiting Control

FPPT enables flexible active power control

v) i hF
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Power Reserve Control

Power Reserve Control (PRC) is demanded today

» Grid stability, e.g., due to frequency excursions
» Frequency-dependent active power control - regulate frequency

» Power should be reserved (also called delta power control) and in case
needed, release power to support the frequency control

R,

P

limit ava

¥

Flexible Power Point Tracking

AP




Power Reserve Control

Power Reserve Control (PRC) is demanded today
» Grid stability, e.g., due to frequency excursions
» Frequency-dependent active power control - regulate frequency

» Power should be reserved (also called delta power control) and in case
needed, release power to support the frequency control
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Power Reserve Control

Challenges of PRC is how to measure the available

» Installing solar irradiance measurement or using solar irradiance forecasting
data together with the PV array characteristic model.

» Using artificial intelligence (Al) techniques to predict the maximum available
power based on historical operation and meteorological data.

» Applying the curve-fitting approximation of the P-V characteristic of the PV panels
used in the system.

» Employing a small PV unit to operate in the MPPT mode and use the output power
to approximate the total power of the entire system (assuming that the solar
irradiance is similar and evenly distributed for all the PV arrays in the system).

» Adopting a hybrid operation between the MPPT and the PRC mode in one single
PV system.

Master-slave PRC strategy
Sensorless PRC strategy 2>

v) 25 ¥

ZHEJIANG UNIVERSITY




Power Reserve Control

Master-slave PRC exemplified on a two-string system

MPPT Block Master String
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Results - Power Reserve Control

Master-slave PRC for a two-string system (AP = 200 W)

4 Clear Day

3t Available power Total output power

S (with a reserve)
DPC enabled /

PV power (kW)
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Total output power
(with a reserve)

PV power (kW)
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Results - Power Reserve Control

Master-slave PRC for a two-string system (AP = 200 W)
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Power Reserve Control

Sensorless PRC for two-stage systems with capacitors

Routinely operate at MPPT to estimate the available

A
e MPPT operation
Estimated power
Available power _- by MEET
GLJ 4
2
(®)
[a 1
o1 s >
Time
A o FPPT (PLC) operation
e MPPT operation
Available power _.e-
o
=
(@)
[a 1

%i’%g Time
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Power Reserve Control

Sensorless PRC for two-stage systems with capacitors

» When measured, operate at the power limiting control

» Excessive energy is stored at the DC-link capacitor

MPPT/FPPT Block

g



Power Reserve Control

Sensorless PRC for two-stage systems with capacitors

» When measured, operate at the power limiting control

» Excessive energy is stored at the DC-link capacitor

DC-link
+
PV Arrays ®

Grid

Excessive
Energy

> I|||||||||||I >
> >

Extracted Power Peak Power Injected Power

J'I i

RS 4
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Power Reserve Control

Sensorless PRC for two-stage systems with capacitors

» When measured, operate at the power limiting control

» Excessive energy is stored at the DC-link capacitor

X i
g Current Ginv
Controller

sin 0,

DC-link controller

2 ) B
/ g Yongheng YANG
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Results - Power Reserve Control

Sensorless PRC - a cost-effective solution
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Results - Power Reserve Control

Sensorless PRC - a cost-effective solution
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Flexible Frequency Support from PV Systems

Inertia Provision and Frequency Damping

» Over-frequency issue: PV system shall reduce the output power

» Under-frequency issue: PV system should increase the output power

» Solution: Power reserve control

PS\lf&X
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Power
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v) 25 ¥
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Flexible Frequency Support from PV Systems

Full-range Frequency Regulation

» Virtual inertia: In proportion to the derivative of frequency
» Frequency damping: In proportion to the frequency deviation

» Solution: Coordination of power reserve

-}




Experimental Results

Virtual Inertia Control to enhance the grid integration

= Rate of Change of Frequency (ROCOF)
= Frequency Nadir
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Virtual Inertial Control with Internal Storage

Virtual Inertia Provision from DC-link capacitors
= Universal solutions (physical storage])

= Limited inertia (due to the stability concern)

Synchronous Generator DC-Link Capacitor

—
ZZA| Vdc
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P —P =2H— i
dt vdc
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Virtual Inertial Control with Internal Storage

Virtual Inertia Provision from DC-link capacitors

= Universal solutions (physical storage])

= Limited inertia (due to the stability concern)
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Flexible Frequency Support from PV Systems

Coordination for inertia emulation and frequency damping
A Incident (e.g., load step)

fO_u ‘; T
fo Y Normal operation band /
foa ' }
> F RoCoF Restoration
5
g, Primary frequency control Secondary frequency control
L
3 N —O~
Recovery
Nadir
.
iR lRes
Time

/

¢ Crucial indices

* Frequency nadir

= RoCoF (Rate of Change of Frequency)
= Steady-state frequency deviation

V) it
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Flexible Frequency Support from PV Systems

Coordination for inertia emulation and frequency damping

GRID CODE FOR THE NORTHERN EUROPE GRID ON THE FREQUENCY

QUALITY.
Description Requirement
Rated grid frequency 50 Hz
Thresholds of normal operation + 0.1 Hz
Maximum instantaneous frequency deviation + 1 Hz
Maximum steady-state frequency deviation + 0.5 Hz
Frequency restoration range + 0.1 Hz
Time to recover frequency Not required
Time to restore frequency 4 15 minutes
RoCoF withstanding capability” + 2.5 Hz/s

* Required by local system operators, where the regulation code of the
Danish power grid is applied.

/

¢ Frequency quality improvement

« Optimally utilize power reserve (“energy storage”) of PV system

* Adaptively adjust inertia constant and damping gain

i F
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Flexible Frequency Support from PV Systems

Coordination for inertia emulation and frequency damping
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Simulation Results
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Simulation Results

Proposed Control:
» Performs well in reducing RoCoF and instantaneous frequency deviation

= Optimally utilizes the power reserve to reduce the steady-state frequency deviation.

TABLE V
FREQUENCY QUALITY INDICES WITH DIFFERENT FREQUENCY CONTROL
STRATEGIES OF PV SYSTEMS."

Control method Nadir |RoCoF| g:;ﬁgﬁg

No PV control 49.28 Hz 1.10 Hz/s 49.46 Hz
Fixed inertia constant 49.38 Hz 0.95 Hz/s 49.46 Hz
Fixed damping gain 49.53 Hz 1.05 Hz/s 49.64 Hz
Fixed inertia & damping 49.56 Hz 1.00 Hz/s 49.64 Hz
Proposed control 49.38 Hz 1.00 Hz/s 49.72 Hz

* The indices in bold are those better than the proposed.

o) i /

ZHEJIANG UNIVERSITY




Summary and Outlook

» PVis still booming - Challenging the power grid

PV is still one major renewable energy, and its installations are still increasing.
Catering for a higher penetration degree of PV systems may challenge the grid
itself. More stringent requirements have been released to enable grid-friendly

Integration of PV systems.

» Grid-friendly strategies are necessary > Advanced control

“Virtual energy storage control”, e.g., Power limiting control, Power reserve
control, is, cost-effective solutions to frequency stabilities to a large extent.
Advanced control of PV systems will further enable the manageability.
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