AGRIVOLTAIC: PRACTICAL EXPERIENCE AND POTENTIAL IN CHILE

David Jung M.Sc.

Fraunhofer Chile Research (FCR) - Center for Solar Energy Technologies (CSET)

NEtwoRk – Distinguished Lectures Program of SERC

5th of October 2021

AGENDA

1 Fraunhofer CSET in Chile

2 Agrivoltaic as a Dual-Use of Land Concept

Top ranking applied research center in Europe Fraunhofer Gesellschaft

Fraunhofer Gesellschaft: Represented worldwide

© Fraunhofer

•

Fraunhofer CSET: Solar Energy Pioneer in South America and Chile

- Center for Solar Energy Technologies (CSET) in Chile was founded in 2014
- Applied research in the areas
 - Solar PV
 - Solar Thermal
 - Business Development

AGENDA

2 Agrivoltaic as a Dual-Use of Land Concept

Agrivoltaic in Chile: Research and Potential

Agrivoltaics was first proposed as a Dual-Use of Land solution in 1981 at Fraunhofer ISE in Germany

The development of solar energy in the last decade has been extraordinary

9 | Sources: pv-magazine-latam.com, IEA, IRENA (2020) © Fraunhofer Fraunhofer

Agrivoltaic Pilot Plant in Heggelbach

Adaptive shading with PV-panel tracking over wine grapes in France

11 | Source: <u>Sun'Agri</u>, pv-magazine © Fraunhofer

Moveable arc-shaped PV modules over farmland and lifestock

12 | Source: Goldbeck Solar © Fraunhofer

Vertical bifacial PV panels on hay fields in Germany

13 | Source: Next2Sun © Fraunhofer

Agrivoltaic is as diverse as agriculture itself and aims at creating a benefit for the farmer

Semi-transparent PV modules as rain and hail protection in Germany

Rain and wind protection with semitransparent PV-panels over raspberries in the Netherlands

Combination of agrivoltaic systems with (intelligent) plastic cover to protect crops in Italy

17 | Source: <u>Sun'Agri</u>, REM Tec © Fraunhofer

2021: Worldwide trends in agrivoltaic

Growing interest

Agrivoltaic is as diverse as agriculture itself

Focus on providing benefits for the farmer

AGENDA

Fraunhofer CSET operates three agrivoltaic pilot plants in central Chile

Fraunhofer CSET operates three agrivoltaic pilot plants in central Chile

Total Capacity	kWp	12.48 (48 Panels)
PV Panel	-	Jinko Solar JKM260
Technology	-	Poly-crystalline
Capacity PV Panel	Wp	260
Inclination of Panels	o	27 (fixed)
Elevation of Panels	m	3.9
Plant Area	m²	224 (8m × 28m)

Fraunhofer CSET Agrivoltaic pilot plants: Practical experience

Fraunhofer CSET Agrivoltaic pilot plants: Investigation on the microclimate

© Fraunhofer

Microclimate Analysis

- Irradiation \rightarrow 30% reduction registered under the panels.
 - Humidity \rightarrow 10% 20% increase (relative humidity)

Temperature \rightarrow no significant difference.

Fraunhofer CSET Agrivoltaic pilot plants: Investigation on plant growth

Lettuce harvest analysis (2019)

→ no statistical difference between treatments

High soiling rates of up to 0.35 %/day in summer months require cleaning (solutions)

What is the potential of agrivoltaic in South America?

Potential of Agrivoltaic: Farmers need climatic protection to assure crop quality and efficient water use

Crop Damage because of adverse climate

 Unseasonal heavy rainfalls causes "cracking" and leads to loss of harvest
Chile Fruit Harvest Deeply Affected by Heavy Rains, Rise in Prices
Expected Chile: Weather-related fruit losses pegged at \$150M

Sun strokes because of intensive sun light

37 | Source: ODEPA (2021): Castros Fruticales, tridge.com, www.freshfruitportal.com © Fraunhofer

Potential of Agrivoltaic: Farmers use Shading nets to avoid sun burns and to use water more efficiently

Potential of Agrivoltaic: Purposeful Shading with PV Panels

Shading Nets in Agriculture

- Increase water use efficiency
- Protection from heat stress, sun strokes and burnings

Conceptual Agrivoltaic Plant Design

- Allow machinery use
- Provide shading similar to shading nets

Potential of Agrivoltaic: Purposeful Shading with PV Panels - Simulation of Light Distribution

40 | Source: Fraunhofer CSET | <u>https://www.youtube.com/watch?v=P_UC7g5sBbs</u> © Fraunhofer

Potential of Agrivoltaic: Purposeful Shading with PV Panels - Simulation of Light Distribution \rightarrow Shade Design

Annual Light Distribution Azimuth 0° Azimuth 310° 0% 20% 40% 60% 80% 100% **GHI Shadow:**

41 | Source: Fraunhofer CSET

© Fraunhofer

Agrivoltaic could enable resilient agriculture in dry and sunny regions in Chile

Fraunhofer as a leading agrivoltaic pioneer and support for the industry

Ongoing Agrivoltaic Research and Industry Projects at Fraunhofer ISE and Fraunhofer CSET

- Currently 10 agrivoltaic pilot plants in Europe, Africa and South America in operation
- 10 more pilot plants under construction
- Consultancy in ongoing industry projects
 - Biggest site: 350 ha
 - Countries: Italy, Netherlands, Nigeria, Chile
- Covered Services: Design, Light simulation, Crop assessment, scientific monitoring among others

Our Vision

We enable the local industry in Chile and South America to commercialize agrivoltaic as a sustainable solution to protect crops, water and climate with PV panels.

AGENDA

Agrivoltaic in Chile: Research and Potential

Thank you for your Attention – Questions?

In case you have any further questions, please contact:

david.jung@fraunhofer.cl

Fraunhofer Chile Research – Center for Solar Energy Technologies

Website: <u>www.fraunhofer.cl</u>

Follow us on Twitter: @FraunhoferChile

Follow us on LinkedIn: Fraunhofer Chile

