

Enabling Ubiquitous Solar Photovoltaic Power Through Power Electronics Design

Online Meetings of the Worldwide Energy Network

Dr. Katherine A. Kim

December 28, 2021

Biography: Katherine A. Kim

- National Taiwan University, Taiwan
 - Associate Professor, Electrical Engineering, 2019-present
 - Power Electronics for Advanced Renewable Systems (PEARS) Lab
- Ulsan National Institute of Science and Technology (UNIST), Korea
 - Assistant Professor, Electrical and Computer Engineering, 2014-2018
- University of Illinois at Urbana-Champaign, IL, USA
 - Ph.D. Electrical and Computer Engineering, 2014
 - M.S. Electrical and Computer Engineering, 2011
- Olin College of Engineering, MA, USA
 - B.S. Electrical and Computer Engineering, 2007
- Industry Experience:

National Taiwan

University

- Texas Instruments, Dallas, TX, USA, 2008
- Bluefin Robotics, Cambridge, MA, USA, 2009
- Research Areas: PV Systems, Modeling & Simulation, DC-DC Converter Control, Energy Harvesting Systems

ROBOTICS

Olin College

of Engineering

National Taiwan University, Taipei, Taiwan

Product Rating: 6 W

Corner Shaded: 3.5 W (58%)

Half-Shaded: 0.3 W (5%)

Outline

- Solar Photovoltaic Basics
- Emerging Solar PV Applications
- Exploring Parallel Converter Architectures
- Measuring Solar PV Profiles for Wearables
- Maximum Power Point Tracking for Low Power Consumption
- Conclusion

Photovoltaic (PV) Materials

- Crystalline Si
 - Monocrystalline
 - Polycrystalline

- Thin-Film Technologies
 - Copper indium gallium selenide (CIGS)
 - Cadmium telluride (CdTe)
 - Amorphous silicon (a-Si)
- Multi-junction
 - Double-junction
 - Triple-junction

[Source: http://www.cleanenergyreviews.info/]

Photovoltaic (PV) Materials

- Emerging PV
 - Dye-Sensitized Cells
 - Perovskite Cells
 - Organic Cells

[Source: www.electronicsweekly.com]

[Source: http://www.solarisnano.com/]

Photovoltaic Electron-Hole Generation

National Taiwan University 國立臺灣大學

[Source: http://www.science-kick.com]

Photovoltaic Cell Basics

Ideal PV Model

allatillialla

14

PV I-V Characteristics

PV

lpν

Vpv

PV Panel Curves

I-V Curve Under Varying Conditions

PV Mismatch: Cell Characteristics

PV Mismatch: String Characteristics

PV Cell Binning

Panel Cleaning

Research Objective

Question:

• How can we embrace solar photovoltaic cell mismatch while maximizing output power?

Solutions:

- Rethink the system and power converter architecture
- Use intelligent control at the converter level

Outline

- Solar Photovoltaic Basics
- Emerging Solar PV Applications
- Exploring Parallel Converter Architectures
- Measuring Solar PV Profiles for Wearables
- Maximum Power Point Tracking for Low Power Consumption
- Conclusion

Emerging PV Power Applications

Electric Vehicles

Drones

Solar Electric Cars

Toyota (2019)

Lightyear One (2021)

[Source: https://www.greencarreports.com/news/1123920_toyota-covers-priusprime-with-solar-panels-to-test-mileage]

[Source:https://lightyear.one/lightyear-one]

Photovoltaic Solar-Powered Drone

Video: https://youtu.be/-gvolbj536c

National I-Lan University ECIE Lab: http://ecie.tech/

Is the Future Wearable?

Wearable activity monitor

- Step count
- Heart rate
- Oxygen rate
- GPS and etc.

Wearable 3D motion tracker

https://www.youtube.com/watch?v=edJXcigKEPU

Wearable gesture sensor

Can we power them with Solar Energy?

Solar Powered Applications

Ultra-thin Organic Solar Cells

Cells-Far-fetched-Then-But-Possible-Now

Flexible Solar Cells

Wearable Solar Coat

https://design-milk.com/wearable-solarclothing-charges-smartphone/

Solar Backpack

https://inhabitat.com/ecouterre/ralphlauren-launches-800-solar-poweredwaterproof-backack/

Solar Ski Helmet

https://www.izm.fraunhofer.de/en/news_e vents/tech_news/solarhelm_liefertstromauf derskipiste.html

Product Rating: 6 W

Corner Shaded: 3.5 W (58%)

Half-Shaded: 0.3 W (5%)

Power System Design Solutions

Outline

- Solar Photovoltaic Basics
- Emerging Solar PV Applications
- Exploring Parallel Converter Architectures
- Measuring Solar PV Profiles for Wearables
- Maximum Power Point Tracking for Low Power Consumption
- Conclusion

Challenges for Solar-Powered Wearables

Initial Approach: SEPIC in Parallel DPP Architecture

- SEPIC: Single-ended primary-inductor converter
- Coupled inductor is used to reduce
 magnetics size
- Utilized parallel DPP system
 architecture
- PV panel voltage is above DPP converter output for the ease of sensor and controller implementation

F. Selin Bagci, et. al. "Low-Power Photovoltaic Energy Harvesting With Parallel Differential Power Processing Using a SEPIC," IEEE Applied Power Electron. Conf., 2019.

SEPIC DPP Operation

F. Selin Bagci, et. al. "Low-Power Photovoltaic Energy Harvesting With Parallel Differential Power Processing Using a SEPIC," IEEE Applied Power Electron. Conf., 2019.

Testing with Two DC-DC Power Converters

F. Selin Bagci, et. al. "Low-Power Photovoltaic Energy Harvesting With Parallel Differential Power Processing Using a SEPIC," IEEE Applied Power Electron. Conf., 2019.

Converter Operating Waveform

MPP Operation of One PV Panel

MPP Operation After Load Connection

F. Selin Bagci, et. al. "Low-Power Photovoltaic Energy Harvesting With Parallel Differential Power Processing Using a SEPIC," IEEE Applied Power Electron. Conf., 2019.

Solar Powered Bag: Initial Prototype

University

國立臺灣大學

F. Selin Bagci, et. al. "Low-Power Photovoltaic Energy Harvesting With Parallel Differential Power Processing Using a SEPIC," IEEE Applied Power Electron. Conf., 2019. National Taiwan

F. Selin Bagci, et. al. "Low-Power Photovoltaic Energy Harvesting With Parallel Differential Power Processing Using a SEPIC," IEEE Applied Power Electron. Conf., 2019.

Outline

- Solar Photovoltaic Basics
- Emerging Solar PV Applications
- Exploring Parallel Converter Architectures
- Measuring Solar PV Profiles for Wearables
- Maximum Power Point Tracking for Low Power Consumption
- Conclusion

Wearable PV Bag Prototype

FRONT VIEW

P-V SWEEP OF THE PANEL (Simulated)

- 4 identical panels.

 Best case scenario: Total input power = 1.2 W x 4 = 4.8 W

F. S. Bagci, et. al. "Power Profile Measurement and System Design Analysis for a Wearable Photovoltaic Application," International Power Electronics and Motion Control Conference – ECCE Asia, Nanjing, China, Dec. 2020, pp. 1469-1474.

Power Profile Measurement

Measurement Device Hardware

1. PV terminals were shorted to get short-circuit current (I_{sc})

- 2. Isc data was saved on the SD card
- 3. Irradiance (G) is calculated since it's proportional to I_{sc}

• Taken on a bright day, with no direct shading

F. S. Bagci, et. al. "Power Profile Measurement and System Design Analysis for a Wearable Photovoltaic Application," International Power Electronics and Motion Control Conference – ECCE Asia, Nanjing, China, Dec. 2020, pp. 1469-1474.

Power Profile Measurement

F. S. Bagci, et. al. "Power Profile Measurement and System Design Analysis for a Wearable Photovoltaic Application," International Power Electronics and Motion Control Conference – ECCE Asia, Nanjing, China, Dec. 2020, pp. 1469-1474.

Power Profile Measurement

ullutilitullu

國立臺灣大學

F. S. Bagci, et. al. "Power Profile Measurement and System Design Analysis for a Wearable Photovoltaic Application," International Power Electronics and Motion Control Conference – ECCE Asia, Nanjing, China, Dec. 2020, pp. 1469-1474. 42

System Configuration Comparison

Parallel PV configuration + Boost

<u>converter</u>

F. S. Bagci, et. al. "Power Profile Measurement and System Design Analysis for a Wearable Photovoltaic Application," International Power Electronics and Motion Control Conference – ECCE Asia, Nanjing, China, Dec. 2020, pp. 1469-1474.

System Configuration Comparison

Parallel DPP

Output Power Comparison

Case 1: Unshaded

Outline

- Solar Photovoltaic Basics
- Emerging Solar PV Applications
- Exploring Parallel Converter Architectures
- Measuring Solar PV Profiles for Wearables
- Maximum Power Point Tracking for Low Power Consumption
- Conclusion

Burst-Mode MPPT Algorithm

• Target is to reduce active switching time and overall losses

Burst-Mode MPPT Algorithm Core Concept

Burst-Mode MPPT Algorithm Core Concept

At MPP

Augmented Boost Converter Topology

PV Input +

PV Input -

Programming

Interface

PEARSLAB

Conventional P&O MPPT vs. Burst-Mode MPPT

Burst-Mode MPPT at MPP:

- Duty ratio is incrementally adjusted \rightarrow Switch is constantly ON

- Actively switching ONLY when $V_{pv} \geq V_{ref}$ \rightarrow Reduced ON time

Simulation Setup

Single-PV/Single-Converter System:

- Converter Switching Frequency = 500 kHz

High switching frequency \rightarrow Smaller passive components

Mational Taiwan University 國立臺灣大學

P&O vs. Burst-Mode MPPT (with 3-PV/3-Converter System)

Tracking Efficiency Comparison

Outline

- Solar Photovoltaic Basics
- Emerging Solar PV Applications
- Exploring Parallel Converter Architectures
- Measuring Solar PV Profiles for Wearables
- Maximum Power Point Tracking for Low Power Consumption

Conclusion

Future Directions: One DPP Converter Per Panel & Flexible PV/PCB

Conclusion

- Future PV applications include: vehicles, drones, wearables, and many more
- Solar PV characteristics change with irradiance (light intensity) and temperature
- In emerging solar applications, the inherent challenge is that PV characteristics are uneven
 - Parallel connection and individual converters can optimize output power
 - In wearable applications, the incoming light varies quickly
 - Individual MPPT control algorithms are needed to maximize power under various conditions
 - Controllers/algorithms for the converters must have low power consumption
 - Boost-mode MPPT algorithms have potential for small-sized converters
 - Future work on flexible converters will be key to enabling wearable PV applications
- With more research, various applications can be powered with solar

